On a Theorem of Faltings on Formal Functions
نویسندگان
چکیده
In 1980, Faltings proved, by deep local algebra methods, a local result regarding formal functions which has the following global geometric fact as a consequence. Theorem. − Let k be an algebraically closed field (of any characteristic). Let Y be a closed subvariety of a projective irreducible variety X defined over k. Assume that X ⊂ Pn, dim(X) = d > 2 and Y is the intersection of X with r hyperplanes of Pn, with r ≤ d − 1. Then, every formal rational function on X along Y can be (uniquely) extended to a rational function on X. Due to its importance, the aim of this paper is to provide two elementary global geometric proofs of this theorem.
منابع مشابه
Vanishing of Ext-Functors and Faltings’ Annihilator Theorem for relative Cohen-Macaulay modules
et be a commutative Noetherian ring, and two ideals of and a finite -module. In this paper, we have studied the vanishing and relative Cohen-Macaulyness of the functor for relative Cohen-Macauly filtered modules with respect to the ideal (RCMF). We have shown that the for relative Cohen-Macaulay modules holds for any relative Cohen-Macauly module with respect to with ........
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملA short introduction to two approaches in formal verification of security protocols: model checking and theorem proving
In this paper, we shortly review two formal approaches in verification of security protocols; model checking and theorem proving. Model checking is based on studying the behavior of protocols via generating all different behaviors of a protocol and checking whether the desired goals are satisfied in all instances or not. We investigate Scyther operational semantics as n example of this...
متن کاملTitchmarsh theorem for Jacobi Dini-Lipshitz functions
Our aim in this paper is to prove an analog of Younis's Theorem on the image under the Jacobi transform of a class functions satisfying a generalized Dini-Lipschitz condition in the space $mathrm{L}_{(alpha,beta)}^{p}(mathbb{R}^{+})$, $(1< pleq 2)$. It is a version of Titchmarsh's theorem on the description of the image under the Fourier transform of a class of functions satisfying the Dini-Lip...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008